[Development Support and Productivity Improvement]

Hardware/Software Co-Simulation

Fumihiko Mori

Test System for Embedded

System

Embedded, Hardware/software co-simulation, RTL simulator, FPGA, ASIC, LSI

At the embedded system product development center, the improvement of
development efficiency is continually required to keep up with market trends of
expeditiously advancing semiconductor miniaturization and large-scale soft-
ware development. It is also imperative that our products be of high quality
because our products are playing important roles that support social infra-

As a measure against the aforementioned issue of development efficiency,
hardware/software co-simulation for embedded systems have been in the spot-
light. Under this technique, board operation is simulated before the start of ac-

Without using any dedicated co-simulator, we actively utilized the Register
Transfer Level (RTL) Simulator in the embedded system development worksta-
tions in Japan. As a result, we built a hardware/software co-simulation environ-

Abstract
structures.
tual board production.
ment without any new investment.
1 Preface

In the field of embedded system product devel-
opment, improvement of development efficiency is
continually required to keep up with market trends
of expeditiously advancing semiconductor miniatur-
ization and large-scale software development. It is
also imperative that our products be of high quality
because our products are playing important roles to
support social infrastructures.

As a measure against the aforementioned
issue of development efficiency, hardware/software
co-simulation (“HW/SW co-simulation” hereafter) for
embedded systems have in the spotlight. Under this
technique, the board operation is simulated before
the start of the actual board production.

Many dedicated co-simulators are sold by var-
ious EDA vendors. These prices are, higher than
those of Register Transfer Level (RTL) simulators.
We have already introduced RTL simulators. In
addition, since the programming language used for
the simulator is different from our commonly used
ones, it is difficult to introduce these co-simulators.

In order to solve these issues and support the
“improvement of development efficiency” and “high
quality” required for the above embedded system

products, we built the HW/SW co-simulation envi-
ronment by actively using the RTL simulators. This
paper introduces the co-simulation test system for
an embedded system where the HW/SW co-simula-
tion environment is made by actively using the RTL
simulators.

2 Configuration and Features of
the Co-Simulation Test System for
an Embedded System

2.1 Central Processing Unit (CPU) Model

This model is devised to simulate the operation
of the CPU to be adopted in our embedded system
products. It can simulate bus operations using soft-
ware of actual CPU by using the RTL simulator. In
addition, it is possible to simulate functions of
peripheral units around the CPU, such as functions
of interruption and Direct Memory Access (DMA).
The timing specifications are the same as those of
an actual CPU, such as an operation clock number
like an instruction execution number, an interrupt
response clock number, and also a bus signal delay
time.

For software implementation, an execution file
is used. It is generated by the assembler file gener-

MEIDEN REVIEW Series No.168 2016 No.3

33

34

ation tool or the hand-coded assembler support tool
to be described later.
2.1.1 Timing Monitoring Function

Violation of CPU timing specifications in regard
to setup and holding time can be detected.
2.1.2 Dedicated Instructions for Debugging

Instructions to be supported by a CPU model
come in the instructions of an actual CPU and also
in the dedicated instructions for debugging. Some
examples are shown below.
(1) PRINT instruction

Character strings can be arbitrarily displayed
in the console window of the RTL simulator. This
function is useful for software operation analysis.
(2) WAIT instruction

At the time of debugging or in the case of time
adjustment for software execution, it is possible to
produce execution waiting time for the CPU model.
Reliable testing is possible for timing competition in
cases of an interrupt and 2-port memory access.
2.1.3 Initialize Setup Function

Since necessary setups required for CPU oper-
ation, such as bus controller setting, have been incor-
porated in advance, no setup software is needed.
After the reset condition is released, the CPU model
can execute a required function immediately.

2.2 Peripheral Model

Similarly as for the CPU model described in 2.1
above, this model can simulate an operation of a
memory or a peripheral Large Scale Integration
(LSI) with the RTL simulator. The operation clock
number and timing specifications are the same as
those of actual devices. In addition, the timing mon-
itoring function is also devised to be the same as for
2.1.1 above.

The memory model can set up the initial val-
ues at the start of simulation by virtue of the memo-
ry initialize function (to be related later).

2.3 Virtual Board

The CPU and peripheral models, as well as
design models (RTL) of Field Programmable Gate
Array (FPGA) and Application Specific Integrated
Circuit (ASIC), are connected to produce the same
configuration of the board. This model is then capa-
ble of simulation of board operation by using the
RTL simulator. To make this virtual board, we use a
block diagram editor incorporated in the RTL simu-
lator Active-HDL made by Aldec., Inc. (“Active-HDL”
hereafter).

MEIDEN REVIEW Series No.168 2016 No.3

B FEISI7OVERY =)L Ver2.01 (=3
BTN |
abs77)b

SEIEFNTPAN

CPUBT

Sl

[eAATvBE

ey Memory initialize function

RAMROMIRE

SEETIRRS SBR[- BEAEGER
E= 15 PELA 77l
>
-
Execution function selection function
RiTLROBBIE + +
k-1 R PEA bealld
L)
*
S 4
2BIPELA T 7)) MERL
Status Register 724 HERRiR S ——.
P, 22T Pl [(E=ReRm (87)
FEY]

Assembler File Generation Tool

The startup screen of the assembler file generation tool is
shown.

2.4 Assembler File Generation Tool

Fig.1 shows a screen of the assembler file
generation tool. An executable object generated by
the software development environment for CPU (to
be discussed later) is converted into a format that
can be executed by the CPU model, and an execu-
tion file is generated. This tool offers the following
features:
2.4.1 Execution Function Selection Function

As stated in the 2.1.3, no software processing
for initial setup is needed for the CPU model. After
the reset condition is released, the CPU model can
execute a required function immediately. When a
debugging function is selected, it becomes possible
to generate an execution file that can execute only
the required function. As a result, the execution time
needed for reset start processing can be reduced
and debugging efficiency can be improved.
2.4.2 Memory Initialize Function

A function selected by the execution function
selection function is capable of an execution without
pretreatment. In some cases, it requires that certain
specified contents have to be in the memory as the
initial values. When initial values for the memory are
described in the memory, the assembler file gener-
ation tool generates an execution file combined with
memory initial values. The memory model of the vir-
tual board acquires and sets up memory initial val-
ues from the execution file. After that, the selected
execution function can set up the required initial val-
ues in the memory model before execution.

FEEPEITAL | (R]
FREFUT) [(R)
CPUR{T (BRI -]
2B [I ijz/LNEllli?] R |
Status Reeister [(SzawhemE)

[whmusy | (CAERBRE
RE MR EE |

B B BB

Hand-Coded Assembler Support Tool

The startup screen of the hand-coded assembler support tool is
shown.

2.5 Hand-Coded Assembler Support Tool

Fig. 2 shows a screen shot of the hand-coded
assembler support tool. The assembler file genera-
tion tool described in 2.4 calls for an executable
object that is generated by the software develop-
ment environment for CPU (to be discussed later).
For this reason, it is necessary to use a high degree
of perfection software source that can generate
objects. For the embedded system development,
development of hardware and software is simulta-
neously promoted. In some cases, however, execut-
able objects are not always available at the start of
hardware debugging. The hand-coded assembler
support tool can generate an execution file of
the CPU model based on a program described
in assembler language without using the above
executable object. By virtue of this technique, it is
possible to start hardware debugging without wait-
ing for the completion of generating executable
objects. Further, by using dedicated instructions for
debugging related in the 2.1.2, we could perform
debugging work more efficiently.

2.6 Software Development Environment for
CPU

This is a PC application software which gener-
ates executable objects for actual CPU. Similarly as
for debugging with an actual CPU, we use the same
software to be furnished by the CPU supplier.

2.7 RTL Simulator

This is a PC simulator software which executes
HW/SW co-simulation for virtual boards. We adopt-
ed the Active-HDL.
2.7.1 Source Display Function

Fig. 3 shows the source display function,
whose function is an add-on function made by the

a
T o P e
D-GH AN @Y NS R MY DR [o, SEFE) w3

Design B z @ fulle Qo 49 g hesstant ARBBURRAS/EESLS

\ T we . m ED

(LT T Ty T AT T T W VL
[——

Cursor

v-7ET WM NS

(a) Waveform window

P ssm ErapnEs
Dasign & ELrE a0 26 (AAT S

ODED
oL — AL R I SR T Y

Ln 165 % | WM INS

(b) Text editor

Source Display Function

(a) Shows an arbitrary operating part of a simulation waveform.
(b) Shows the relevant part of a software source file.
*All information about designing is imagery.

company. This source display function utilizes func-
tions of a waveform window and text editor accom-
modated in the Active-HDL. As shown in (a), this
function is executed by indicating any part of a
waveform with a cursor in the state that the wave-
form is showing the result of simulation in the wave-
form window. Then, as shown in (b), the text editor
opens a corresponding software source file and the
cursor points at the associated line. In addition to
the role of software source files, it is possible to dis-
play an assembler file compiled in the software
development environment for the CPU. This func-
tion utilizes the user tool registration function fur-
nished in the Active-HDL. This function can be exe-
cuted by actuating a menu or a button on the
Active-HDL screen.
2.7.2 Waveform Display Function

Fig. 4 shows the waveform display function.
The waveform display function is an add-on func-
tion developed by the company. It utilizes a text edi-
tor integrated in the Active-HDL and also the wave-

MEIDEN REVIEW Series No.168 2016 No.3

35

36

3
3
W Conscie
war R AR
(a) Text editor
Do SR Seh Yow Wrtme' D Sseon ok Jee et
P-FH = SFNCEEAMTYIERD 288 [rrp wnHH e s» aaa T E)
I M OWS4r B OB ALRAREAAAGA - MM AR ABRB MR RE/EER S
@ testoench_one_bes_oont el Vom W . . . = ™a - 28 £
s 1 =
STM_F_INPUT 1 AN AT T T IO O UU U UUAAR
[e = STMF_PATTERN [)] 1 . .
—— c
5 =
TR *
rp— E.pptcTin D 8 s
F—— B =ACTUAL LED B 0 3
@ oo 5T 106, BeEPECTED LEDC 12 e | — — - T 5) E——
B ACTUAL_LED C 2 ®) ¥ X T 173 T b1 -
[ﬂA XPECTED_LED_D 7 200000CO00O0CCO00COOCCO0COOCO00COOCC000CO0000CCO00
L Lo ACTUAL_LED_ D L] 200000CC0C00CCO00C00CCO0COOCOO0CO0CCO00C000C00CCO00X
10,0, 1 =
s
-
= - =]) Boos
o
B Fies % Sectre [Rasonces] | (80 v fiow 5 Raatop | Eorpiaet i i uotitnds 0 S
Cursor
[
o

(b) Waveform window

Waveform Display Function

(a) Shows an arbitrary part of a software source file.
(b) Shows the relevant part of a simulation waveform.
*¢All information about designing is imagery.

MEIDEN REVIEW Series No.168 2016 No.3

form window. In the state that the simulation has
been finished, the software source file is opened
with the text editor as shown in (a). When an arbi-
trary point is designated with a cursor and this func-
tion is executed, a cursor of the waveform window
moves to the designated point as shown in (b). This
function utilizes the user tool registration function
provided to the Active-HDL. It can be used by
means of a menu operation or button operation to
be attempted from the Active-HDL screen.

3 Postscript

This paper introduced the individual functions
of our co-simulation test system for embedded sys-
tems. Thanks to the release of this system, it has
become possible to perform board simulation by
using the RTL simulator. This allowed us to better
debug FPGA and ASIC prior to production of actual
products. There is still room for improvement, how-
ever, on the simulation speed. In other words, it is
difficult to apply this system for software debugging
which requires a long simulation time.

Going forward, we will work on improving
speed performance and make efforts to expand its
application to the software development stage. In
so doing, we will contribute further to the “improve-
ment of development efficiency” and the “higher
quality.”

* All product and company names mentioned in this paper are
the trademarks and/or service marks of their respective owners.

